If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5u^2+27u+10=0
a = 5; b = 27; c = +10;
Δ = b2-4ac
Δ = 272-4·5·10
Δ = 529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{529}=23$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-23}{2*5}=\frac{-50}{10} =-5 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+23}{2*5}=\frac{-4}{10} =-2/5 $
| 25-2c=13 | | 10x-22=8x | | 22-2c=4 | | -2y=8y-20 | | 32x43-1000=36 | | 6=12-2s | | 10=-5/9v | | 5a/3=40 | | (4+x)^4=6561 | | X+24=36,9x-18=9 | | 10=q/4+7 | | 6x=-21/6 | | -2(s+-4.8)+5.04=7.04 | | 6/5=-3w | | 4x+16x-1=4(5x+8) | | X-y=1/4 | | -0.015x^2+0.64x+1.6=6.5 | | m/2-1=2 | | -4(3+2b)+9bb=5 | | 2x+8=1/2(43+x) | | 9x=1,000 | | 3x+3x+x+x=24 | | -3(5y-5)-y=-2(y-4) | | X^=14y | | F(x)=10x=1 | | 2x+8=2/3(x+30) | | 16=4h+8 | | -4p-5.7=12 | | G(x)=6(2x-3) | | 2×+8=2/3(x+30) | | 3/4(x+81)=(4x-1) | | 5y+3-35=0 |